Predicting MLB Pitches

April 14, 2024

Goal: The pitches thrown during Sepetmeber 2019 in the MLB were tested to see if pitch, player,
and situational metrics could predict what types of pitches were about to be thrown, potentially
making it easier for hitters to react to different pitchers.

Model Accuracy: 80%

The model determined that the varaibles release speed, release spin rate, pitcher name, and release
position were the most important in predicting what pitch is coming.

Figure 1 below shows the relationship between release speed and release spin rate for the nine
different pitches thrown. Pitches such as a 4-seam fastball and sinker have high effective speeds,
while sliders and curveballs have the highest release spin rates.

[19]: #importing data/libraries, changing 'pitch type' names, and adding dummy,
—variables
/matplotlib inline
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import zipfile
from sklearn.tree import DecisionTreeClassifier
from mlxtend.plotting import plot_decision_regions

filename="assets/baseball_svm_data.zip"

df=pd.read_csv(zipfile.ZipFile(filename) .open("reg_Sep2019.csv"))

df=df .drop(df [df ["pitch_type"]=='EP'].index)

pd.set_option('display.max_columns', None)

df ['Pitcher _run _diff'] = df['fld _score'] - df['bat_score']

df ['Pitcher_ahead count'] = df['strikes'] - df['balls'l]

df ['pitcher_match_up'] = df.apply(lambda row: 1 if row['p_throws'] ==,
—row['stand'] else 2, axis=1)

df ['if_defense'] = df['if_fielding alignment'] .map({'Standard': 1, 'Infield,
—shift': 2, 'Strategic': 3})

df ['of _defense'] = df['of_fielding alignment'] .map({'Standard': 1, '4th,
—outfielder': 2, 'Strategic': 3})

df['on_base'] = df.apply(lambda row: 1 if not pd.isna(row['on_1b']) or not pd.
—isna(row['on_2b']) or not pd.isna(row['on_3b']) else 0, axis=1)

[20] :

pitch_type_mapping = {

'CH': 'CHG',
'CU': 'CUR',
'FC': 'CUT',
'FF': '48F',
'FS': 'SPL',
'FT': '28F',
'KC': 'KCV',
'SI': 'SNK',
'SL': 'SLD'

df ['pitch_type']l = df['pitch_type'] .replace(pitch_type_mapping)

#add colors
color_list=list(mcolors.TABLEAU_COLORS.keys())

df2=df .groupby("pitch_type") .apply(lambda x: x.assign(color=color_list.pop())).
—reset_index(drop=True)

create scatter plot
fig, ax = plt.subplots(figsize=(12, 6))
for key, group in df2.groupby('pitch_type'):
group.plot.scatter("release_speed", "release_spin_rate", ax=ax, s=15,,
—label=key, color=group['color'])

legend
ax.legend(title='Pitch Type', title_fontsize='large', fontsize='large')

title and labels

ax.set_title("Release Spin vs. Release Speed", fontsize='x-large')
ax.set_xlabel ("Effective Speed", fontsize='large')

ax.set_ylabel ("Release Spin Rate", fontsize='large')

plt.show()

Release Spin vs. Release Speed

3500 ® .
3000
s f .
@ . Y
5 2500 4 . 'y -
“é Pitch Type = ' v :
= -
l%- L] 25F . ® [
3 2000 1 « ASF .,
i « CHG
a
€ 1ggp{ * CUR s
- CuT -
« KCV
1000 1 & SLD
= SNK
500 - LJ SPL - -
&5 70 75 80 85 %0 %5 100

Effective Speed

Figure 1 (Release Speed vs. Release Spin Rate)

Figure 2 below shows the percent of players that throw each pitch, its average spin rate, and release
speed. About 90% of player have a fastball in their arsenal, while only about 7% throw the knuckle
curve and splitter.

[21]: | #Making datatable
df_cleaned = df.dropna(subset=['release_spin_rate', 'release_speed',,
< 'player_name'])

Grouping by 'pitch type', calculating percentages and means

pitch_stats = df_cleaned.groupby('pitch_type') .agg({
'player_name': lambda x: x.nunique() / 540,
'release_spin_rate': 'mean’',
'release_speed': 'mean'

}) .reset_index()

Renaming columns

pitch_stats.columns = ['Pitch Type', 'Percent of Players', 'AVG Spin Rate',

< "AVG Release Speed']

Sorting the DataFrame by the specified columns

pitch_stats.sort_values(by=['Percent of Players','AVG Spin Rate','AVG Release
—Speed'], ascending=[False, False, False], inplace=True)

print(pitch_stats)

Pitch Type Percent of Players AVG Spin Rate AVG Release Speed

1 4SF 0.890741 2299.025716 93.551346
6 SLD 0.720370 2432.308296 84.796059
2 CHG 0.635185 1789.750627 84.800479
3 CUR 0.500000 2540.236294 78.759670
0 25F 0.351852 2170.927233 92.710837
7 SNK 0.220370 2137.761204 92.280260
4 CUT 0.207407 2382.138736 88.672665
5 KCV 0.072222 2509.304147 80.346697
8 SPL 0.070370 1361.617591 85.725813

Figure 2 (Pitches Sorted by Percent of Players That Throw it, as Well as Their Average Spin Rate
and Release Speed)

Figure 3 below shows the count of each pitch thrown in Septmeber 2019. About 14,000 fastballs
were thrown, while lesss than 1,000 splitters and knuckle curves were thrown.

[22]: import seaborn as sns
Grouping by 'pitch type' and counting
counts = df.groupby("pitch_type") .apply(lambda z: len(z)).
—reset_index(name="'count') .sort_values(by='count', ascending=False)

Creating subplots
fig, axes = plt.subplots(l, 2, figsize=(16, 8))

bar plot

sns.barplot(x='count', y='pitch_type', data=counts, ax=axes[0],,
—palette='viridis', orient='h")

axes[0] .set_xlabel('Count')

axes[0] .set_ylabel('Pitch Type')

axes[0] .set_title('Count of Each Pitch Type')

table

axes[1] .axis('off"')

table = axes[1].table(cellText=counts.values, collLabels=counts.columns,
—loc='center', celllLoc='center')

table.auto_set_font_size(False)

table.set_fontsize(16)

column width
table.auto_set column width([0, 1])
table.scale(3.5, 3)

plt.tight_layout ()
plt.show()

Count of Each Pitch Type

pitch_type | count
4SF 14039
SLD 7656
CHG 4485
E‘- CUR 4141
g 2SF 3203
SNK 2924
cuT 2309
KCV 656
SPL 575

0 2000 4000 6000 8000 10000 12000 14000
‘Count

Figure 3 (Pitches Sorted by Count)
MODEL TESTING

[23]: pitch_metrics=['release_spin_rate', 'release_extension', 'release_pos_y', 'release_pos_x', 'releas
player_metrics=['player_name']
game_details=['outs_when_up', 'inning','Pitcher_run_diff', 'Pitcher_ahead_count', 'pitcher_match_

[24]: #Creating new dataframe based on selected variables
df=df [[*pitch_metrics, *player_metrics, *game_details, "pitch_type"]]

dropping NalN
df=df .dropna(subset=["pitch_type"])

#factorize on the player name, since we need numeric values to test

df ['player_name']=df ['player_name'].factorize() [0]
df=df .fillna(df .mean())

Convert specified columns to objects

df ['pitcher_match_up'] = df['pitcher_match_up'].astype(str)
df ['if_defense'] = df['if_defense'].astype(str)
df['of_defense'] = df['of_defense'] .astype(str)
df['on_base'] = df['on_base'].astype(str)

[25]: | # Sample 807 of the data for training
train_df = df.sample(frac=0.8, random_state=42)

The remaining 20/ will be used for testing
test_df = df.drop(train_df.index)

[26]: X_train=train_df [train_df.columns.drop("pitch_type")]
y_train=train_df ["pitch_type"]
X_test=test_df [test_df.columns.drop("pitch_type")]
y_test=test_df ["pitch_type"]

[27]: | #GBM
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import cross_validate

gbm = GradientBoostingClassifier(n_estimators=60,max_depth=5,random_state=42)

Fit the model to the training data
gresults=cross_validate(gbm,X_train,y_train,cv=5,scoring="'accuracy')
#Fit to testing data

gbm.fit(X_train,y_train)

gbmtest = gbm.score(X_test,y_test)

(28] : | #TREE
from sklearn.tree import DecisionTreeClassifier
from mlxtend.plotting import plot_decision_regions

clfs={}
clfs["dt_3"]=DecisionTreeClassifier(max_depth=5, random_state=1337)
clfs["dt_4"]=DecisionTreeClassifier(max_depth=6, random_state=1337)
for label, model in clfs.items():
training
results=cross_validate(model,X_train,y_train,cv=5,scoring="'accuracy')
cv_acc=np.mean(results['test_score'])
testing
val_acc=model.fit(X_test,y_test).score(X_test,y_test)

[29] : | #Random Forest
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import cross_validate

rf = RandomForestClassifier(n_estimators=30, max_depth=4, random_state=42)

#training

rf_results = cross_validate(rf, X_train, y_train, cv=5, scoring='accuracy')
#testing

rf.fit(X_train,y_train)

rfTest= rf.score(X_test,y_test)

[30]: #KNN
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score

knn = KNeighborsClassifier(n_neighbors=5) # You can adjust the number of
—neighbors as per your requirement

#training
kresults=cross_validate(knn,X_train,y_train,cv=5,scoring='accuracy')
#testing

knn.fit(X_train,y_train)

knnTest= knn.score(X_test,y_test)

Figure 4 below shows the different models tested, and their accuracy among the training and test
sets. The GBM model performed the best at about 80% on both sets.

[31]: | #Makng table of training and testing accuracy of models tested
data = {
'Model Name': ['GBM', 'Random Forest', 'TREE', 'KNN'],
'Training Accuracy': [np.mean(gresults['test_score']), np.
—mean(rf_results['test_score']), cv_acc, np.mean(kresults['test_score'l])],
'Testing Accuracy': [gbmtest, rfTest, val_acc, knnTest]

Create a DataFrame
model_df = pd.DataFrame(data)

Display the DataFrame
print(model_df)

Model Name Training Accuracy Testing Accuracy

0 GBM 0.798406 0.802076
1 Random Forest 0.636511 0.634409
2 TREE 0.656862 0.672418
3 KNN 0.604376 0.627157

Figure 4 (Testing and Training Accuracy of Models Tested)

Figure 5 shows the confusion matrix for the selected GBM model. The model had a greater than
50% recall with every pitch, except the 2-seam fastball (only 34%). Looking at the plot, you can
see the model predicted a 4-seam fastball 62% of the time, when it was actually a 2-seamer. Some
other notable pitches that the model struggled differentiating with the 4-seamer were the cutter and
sinker. Although it correctly predicted the cutter 58% of the time it also guessed 4-seam fastball
(as well as slider) about 20% of the time. The sinker was also mistaken for a 4-seam fastball 39%
of the time.

Since about 90% of MLB pitchers throw the 4-seamer, pitchers that can mix in an effective 2-
seamer, sinker, and/or cutter potentially have an advanatge since these pitches seem like they can
create extra confusion for hitters, when paired with the 4-seam fastball.

[42] : from sklearn.metrics import plot_confusion_matrix
fig, axes = plt.subplots(l, 2, figsize=(20, 8))

Plotting normalized confusion matriz

gbmmatrixpercentage = plot_confusion_matrix(gbm, X_test, y_test,
—xticks_rotation='vertical', cmap='cividis', normalize='true', ax=axes[0])

gbmmatrixpercentage.ax_.set_title('Normalized Confusion Matrix')

Plotting non—normalized confusion matric

gbmmatrix = plot_confusion_matrix(gbm, X_test, y_test,,
—xticks_rotation='vertical', cmap='cividis', ax=axes[1])

gbmmatrix.ax_.set_title('Confusion Matrix')

Adjust layout
plt.tight_layout ()
plt.show()

Normalized Confusion Matrix Confusion Matrix

2500

2000

1500

Fue label

Fue label

1000
ELE 0002 ELY
SNK

ENg co1s

SPL 026 023 0.0088 0 0 0035 0 sPL

00

25F
1si
CHG
c
ET)
SHK
SPL

= M o
4 4 2 E g El 7 & E
Predicted label Predicted label

Figure 5 (Normalized and Non-Normalized Confusion Matrix for GBM Model)

Figure 6 shows the precision score for each pitch: Of all the times it was predicted, how often was
that the true pitch? The precision scores for all pitches were greater than 70%. The only pitch
with a signifigant decraese (compared to the recall on the conusion matrix) was the 4-seam fastball,
since the model predcited 4-seamer on other pitches as well.

[43]: from sklearn.metrics import precision_score
gbm_precision=pd.DataFrame([precision_score(y_test,gbm.
—predict(X_test),average=None)],columns=sorted(y_test.unique()))
gbm_precision

[43]:

[45]:

25F 4SF CHG CUR CUT KCV SLD \
0 0.727273 0.766483 0.862967 0.868132 0.862876 0.8775561 0.797338

SNK SPL
0 0.855696 0.79

Figure 6 (Precision Scores for GBM Model)

Figure 7 shows the variable importance for the selected GBM model. The most important variables
were release speed and release spin rate, with other variables such as player name, and release
position playing a role in predictions. One note here is that situational varaibles didn’t play a huge
role in predicting pitches.

importances = gbm.feature_importances_

Get feature names
feature_names = X_train.columns

Sort tmportances in descending order
indices = np.argsort(importances) [::-1]

Plot

plt.figure(figsize=(11, 8))

plt.title("Feature Importances")

plt.bar(range (X_train.shape[1]), importances[indices], align="center")
plt.xticks(range(X_train.shape[1]), feature_names[indices], rotation=90)
plt.xlim([-1, X_train.shape[1]])

plt.tight_layout ()

plt.show()

[46] :

Feature Importances

030 1

0.25

0.20 {

0.15

0.10 1

0.05

0.00 -

inning

on_base
if defense
of defense

guts when up

release speed
player_name
release_pos x
release_pos_z
gt bat number
release_pos y
pitch_number

Pitcher_run_diff
pitcher_match up

release_extension

o =
BB

(=8
E Wi
g v
o T
m i
L
[

Pitcher_ahead_count 4

Figure 7 (Variable Importance for GBM Model)

Looking further into predicting pitches, knowing who is on the mound is crucial, since most pitchers
have a select group of pitches that they throw, and have favorites as well. The number below
indicates how many different pitches the average MLB player threw during this period.

player_pitch_stats = df.groupby('player_name') ['pitch_type'].nunique() .
—reset_index()

Calculating the average number of untique pitch types
average_unique_pitch_types = player_pitch_stats['pitch_type'] .mean()

print("The Average MLB pitcher has this many pitches in their arsenal:",
—.average_unique_pitch_types)

The Average MLB pitcher has this many pitches in their arsenal:
3.683333333333333

With the typical MLB player throwing 3-4 different pitch types, a hitter has to consider what
pitches the pitcher likes to lean on, and how they can spot the difference between them using the
important variables discussed. Two players were randomly selected to do further analysis to see
how we can further predict pitches, given who is on the mound. As you can see in Figure 8, “Player
190” threw four different pitch types and threw offspeed a majorty of the time, but also mixed in

10

[47]:

[48] :

[50]:

some fastballs as well. In Figure 9, you can see “Player 65” threw three different pitch types, with
the 2-seamer being their favorite.

#Dataframe of just one player, then grouping by pitch type

player_190 = df [df['player_name'] == 190]

pitch_stats = player_190.groupby('pitch_type') .agg(
pitch_count=('pitch_type', 'count'),
avg_release_speed=('release_speed', 'mean'),
avg_release_spin_rate=('release_spin_rate', 'mean')

)

pitch_stats_sorted = pitch_stats.sort_values(by='pitch_count', ascending=False)
print(pitch_stats_sorted)

pitch_count avg_release_speed avg_release_spin_rate

pitch_type

CUR 30 82.280000 2472.366667
CHG 21 86.061905 1983.857143
28F 19 95.242105 2278.157895
4SF 18 96.744444 2349.166667

Figure 8 (“Player 190” Pitches Sorted by Count and Release Speed and Spin Rate)

player_65 = df [df ['player_name'] == 65]
pitch_stats2 = player_65.groupby('pitch_type').agg(

pitch_count=('pitch_type', 'count'),
avg_release_speed=('release_speed', 'mean'),
avg_release_spin_rate=('release_spin_rate', 'mean')

)
pitch_stats_sorted2 = pitch_stats2.sort_values(by='pitch_count',,
—ascending=False)

print(pitch_stats_sorted2)

pitch_count avg_release_speed avg_release_spin_rate

pitch_type

28F 43 94.516279 1913.976744
SLD 29 87.020690 2294 .068966
SPL 20 88.345000 1625.041505

Figure 9 (“Player 65” Pitches Sorted by Count and Release Speed and Spin Rate)

Another important variable in predicting pitches was release position. This is likely hard for the
batter to pick up on in a split second, but Figure 10 below shows the different release points for
the two selected players and how they vary for each pitch type. Player 1 tends to have a higher
release on 2-seamers, while Player 2 has a lower release on their changeups.

import matplotlib.pyplot as plt
import matplotlib.colors as mcolors

11

Grouping and assigning colors

color_list = list(mcolors.TABLEAU_COLORS.keys())

df3 =player_65.groupby("pitch_type") .apply(lambda x: x.assign(color=color_list.
—pop())) .reset_index(drop=True)

df4 = player_190.groupby("pitch_type") .apply(lambda x: x.
—assign(color=color_list.pop())) .reset_index(drop=True)

Create a figure with two subplots side by side
fig, axes = plt.subplots(l, 2, figsize=(27, 14))

Plot for the first player
axes [0] .set_title("Player 65 - Pitch Type and Location")
for _, group in df3.groupby('pitch_type'):
axes[0] .scatter(group["release_pos_x"], group['"release_pos_z"], s=50,
—label=group['pitch_type'].iloc[0], color=group['color'])
axes[0] .set_xlabel("Release Position X")
axes[0] .set_ylabel("Release Position Z")
axes[0] .legend(title='Pitch Type', bbox_to_anchor=(1.05, 1), loc='upper left')

Plot for the second player
axes[1] .set_title("Player 190 - Pitch Type and Location")
for _, group in df4.groupby('pitch_type'):
axes[1] .scatter(group["release_pos_x"], group['"release_pos_z"], s=50,
—label=group['pitch_type'].iloc[0], color=groupl['color'])
axes[1] .set_xlabel("Release Position X")
axes[1] .set_ylabel("Release Position Z")
axes[1] .legend(title='Pitch Type', bbox_to_anchor=(1.05, 1), loc='upper left')

Adjust layout

plt.tight_layout ()
plt.show()

12

Player 65 - Pitch Type and Location

.
.
.
6
.
. .
. . 0 .
J
.
.
o . g
. o e .
. .
o .
H N d
£ .o
. .
i
o e o
B
50
H -
g .
° .
.
5
.
.
3 ED T S T
[

Figure 10 (Pitches for Two Selected Players, by Pitch Type and Release Position)

Player 190 - Pitch Type and Location

e
o
b .
. P L4 .
52{ ® . .®
s
.
.
. . ©
. .
. 4 .
.
.
60 . . .
. .
L.
o
. e
«® o .
.
. .
H CHE
o,
H . .
H .
%58
i ° .
.
.
. .
.o
.
56 -
. .
.
.
s .
w % = m B}

13

